

UOT: 547.057+547.2/4+547.51+547.7/8
DOI: <https://doi.org/10.30546/2521-6317.2025.01.471>

NEW SYNTHESIS OF BUTANE AND CYCLOHEXANE COMPOUNDS CONTAINING TWO FURAN FRAGMENTS

E.I. MAMMADOV, G.A. ZAIDOVA

Azerbaijan Technical University

AZ1073, Baku, H. Cavid pr. 25

e-mail: zaida.zaid88@gmail.com

e-mail: mammadov.elman@rambler.ru

ARTICLE INFO	ABSTRACT
<i>Article history:</i>	
Received:2025-12-16	
Received in revised form:2025-12-16	
Accepted:2025-12-16	
Available online	
<i>Keywords:</i>	
3-chloro- and 2-methyl-3-chloropropenes; adipic and trans-1,4-cyclohexanedicarboxylic acid dichlorides; 1,4-di-(2-furyl)- and 1,4-di-[2-(4-methylfuryl)]butanes; trans-1,4-di-(2-furyl)- and trans-1,4-di-[2-(4-methylfuryl)]cyclohexanes; Diels-Alder adducts	The reaction of adipic acid with thionyl chloride ($SOCl_2$) yields the dichloride anhydride of the corresponding acid. It has been established that, regardless of whether 1,4-cyclohexanedicarboxylic acid is in the cis- or trans-form, its reaction with PCl_3 produces only the dichloride anhydride of trans-1,4-cyclohexanedicarboxylic acid. In the electrophilic addition of adipic and trans-1,4-cyclohexanedicarboxylic acid dichlorides to 3-chloro- and 2-methyl-3-chloropropenes in the presence of $AlCl_3$, 1,2,11,12-tetrachloro-2,11- $H(CH_3)dodecane-4,9-diones$ and trans-1,4-di-[3- $H(CH_3)-3,4-dichlorobutanoyl-1]cyclohexanes$ were obtained, which upon vacuum distillation form 1,4-difuryl derivatives of butane and cyclohexane. Structures of difurans are confirmed by IR and NMR 1H spectroscopy and chemical transformations. Furan compounds with maleic anhydride form Diels-Alder adducts.

INTRODUCTION

Furan and its derivatives are frequently encountered in the composition of natural compounds, they exhibit physiological activity and are widely used in the development of effective pharmaceuticals as well as chemical agents employed in plant protection [1–5].

The broad range of application fields of furan compounds has provided a strong impetus for research directed toward their synthesis by new methods.

Saturated and unsaturated chloroketones are promising starting materials for the synthesis of heterocyclic compounds containing one or two heteroatoms [6–14]. The electrophilic addition reactions of acid chlorides to unsaturated hydrocarbons, their chloro-substituted derivatives, and allylic-type chlorides represent one of the favorable approaches for the synthesis of saturated and unsaturated chloroketones [6, 9–11, 13–16].

It is known that the electrophilic addition reactions of acid chlorides to 3-chloropropene (allyl chloride) and 2-methyl-3-chloropropene (methallyl chloride) in the presence of $AlCl_3$ proceed according to Markovnikov's rule, and that the nature of the products formed depends on the structure of the corresponding carboxylic acids. Thus, when the acid chlorides of acetic, propionic, and butyric acids are used, a mixture of saturated and unsaturated chloroketones is mainly obtained, whereas higher aliphatic carboxylic acid chlorides ($\geq C_4$) as well as cycloalkane

carboxylic acid chlorides yield 2- and 2,4-substituted furan derivatives [6, 10, 12, 17–19].

In the presented article, valuable heterocyclic compounds containing two furan fragments were obtained by the method described.

EXPERIMENTAL SECTION

IR spectra were recorded on a Thermo Scientific Nicolet IS10 FT-IR spectrophotometer, and ^1H NMR spectra were measured on a “Bruker AM-360” instrument using internal standards TMS or HMDS.

The purity of the synthesized furans (4a–d) was determined by thin-layer chromatography (TLC) on “Sulufol UV-254” plates.

Commercial reagents, including 3-chloropropene (2a), 2-methyl-3-chloropropene (2b), adipic acid, and *cis*- and *trans*-1,4-cyclohexanedicarboxylic acids, were used as starting materials.

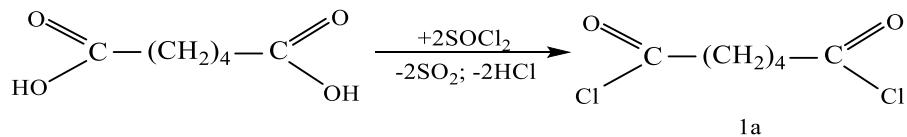
1. Synthesis of difuran compounds 4a–d.

1.1. 1,4-di-(2-furyl)butane (4a). A mixture of 14.7 g (0.11 mol) AlCl_3 and 80 ml of dry dichloroethane was cooled to -20°C , and then, under stirring, 8.35 g (0.05 mol) of dichloranhydride 1a and 9.2 g (0.12 mol) of 3-chloropropene (2a) were added sequentially. The reaction mixture was stirred until it reached room temperature, quenched with 5% HCl solution, and the organic layer was separated, while the aqueous layer was extracted with ether (2×100 ml). The combined organic layer and ether extracts were successively washed with water, 10% NaHCO_3 solution, and again with water, and dried over anhydrous CaCl_2 . The solvents were removed, and the residue was distilled under vacuum in a nitrogen atmosphere. This afforded 4g (42% yield) of 1,4-di-(2-furyl)butane (4a) with the following characteristics: t_{boil} . $108-109^\circ\text{C}/3\text{mm}$; n_D^{20} 1.4955. IR spectrum (cm^{-1}): 3125, 3155(ν_{CH}); 1517, 1598 ($\nu_{\text{C}=\text{C},\text{C}=\text{C}}$); 880 (δ_{CH}). ^1H NMR spectrum (δ , ppm): 1.65 (4H, m, furyl- CH_2 -); 2.58 (4H, m, - $\text{CH}_2\text{-CH}_2$ -); 5.9 (H³-cyclo, 2H, m); 6.13 (H⁴-cyclo, 2H, m); 7.2 (H⁵-cyclo, 2H, m). TLC: R_f 0.53, eluent – hexane: benzene 3:1.

1.2. 1,4-di-[2-(4-methylfuryl)]butane (4b). Using the above method 1.1, adipic acid dichloranhydride (1a) and 2-methyl-3-chloropropene (2b) afforded 1,4-di-[2-(4-methylfuryl)]butane (4b): yield 51%; t_{boil} . $117-119^\circ\text{C}/3\text{mm}$; n_D^{20} 1.4930. IR spectrum (cm^{-1}): 3130 (ν_{CH}); 1534, 1610 ($\nu_{\text{C}=\text{C},\text{C}=\text{C}}$); 889 (δ_{CH}). ^1H NMR spectrum (δ , ppm): 1.4-1.9 (4H, m, furyl- CH_2 -); 1.85 (6H, d, $J=8$ Hz, 2C⁴- CH_3); 2.4-2.9 (4H, m, - $\text{CH}_2\text{-CH}_2$ -); 5.72 (H³-cyclo, 2H, m); 6.94 (H⁵-cyclo, 2H, m). TLC: R_f 0.61, eluent – hexane - 3:1.

Using the above method (1.1), difurans 4c and 4d were synthesized from the reaction of *trans*-1,4-cyclohexanedicarboxylic acid dichloranhydride (1b) with 3-chloropropene (2a) or 2-methyl-3-chloropropene (2b).

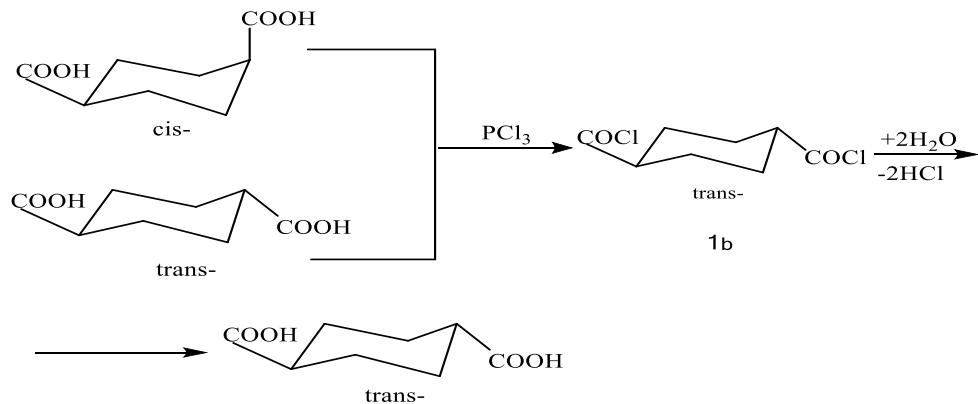
1.3. Trans-1,4-di-(2-furyl)cyclohexane (4c). Yield 53%; t_{melting} $84-85^\circ\text{C}$ (CH_3OH). IR spectrum (cm^{-1}): 3130, 3135(ν_{CH}); 1510, 1606 ($\nu_{\text{C}=\text{C},\text{C}=\text{C}}$); 889 (δ_{CH}). ^1H NMR spectrum (δ , ppm): 1.1-2.4 (10H-cyclo, m); 5.82 (H³-cyclo, 2H, m); 6.1 (H⁴-cyclo, 2H, m); 7.14 (H⁵-cyclo, 2H, m). TLC: R_f 0.56, eluent - CHCl_3 : hexane - 1:1.


1.4. Trans-1,4-di-[2-(4-methylfuryl)]cyclohexane (4d). Yield 57%; t_{melting} $100-101^\circ\text{C}$ (CH_3OH). IR spectrum (cm^{-1}): 2950(ν_{CH}); 1532, 1606 ($\nu_{\text{C}=\text{C},\text{C}=\text{C}}$); 895 (δ_{CH}). ^1H NMR spectrum (δ , ppm): 1.2-2.1 (10H-cyclo, m); 1.8 (6H, d, $J=8$ Hz, 2C⁴- CH_3); 5.6 (H³-cyclo, s, 2H); 6.8 (H⁵-cyclo, 2H, m). TLC: R_f 0.49, eluent - CHCl_3 :hexane - 1:1.

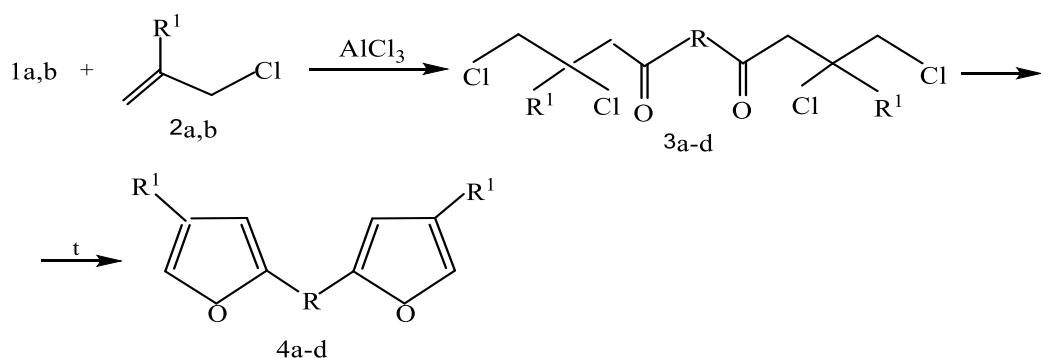
RESULTS AND DISCUSSION

The dichlorides of adipic and *trans*-1,4-cyclohexanedicarboxylic acids (1a,b) were taken to synthesize heterocyclic compounds containing two furan rings.

The dichloride of adipic acid (1a) was obtained from the reaction of the acid with thionyl chloride (scheme 1).


Scheme 1.

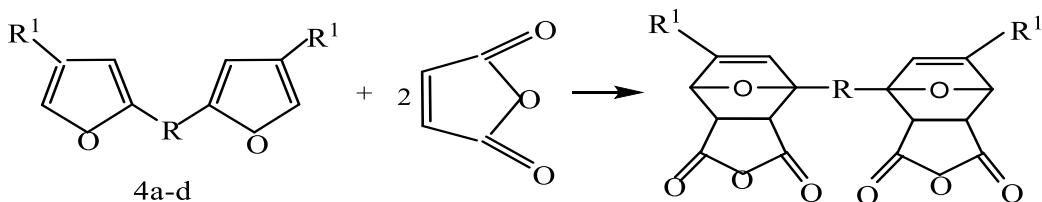
The dichloride (1a) was used without purification, as it readily decomposes upon distillation.


It was determined that, regardless of whether 1,4-cyclohexanedicarboxylic acid is taken in the *cis*- or *trans*-form, the reaction with PCl_3 yields only the dichloride of *trans*-1,4-cyclohexane dicarboxylic acid. Hydrolysis of the dichloride (1b) with water affords exclusively *trans*-1,4-cyclohexanedicarboxylic acid (scheme 2).

Scheme 2.

Reaction of the dichlorides 1a,b with 3-chloropropene (2a) and 2-methyl-3-chloropropene (2b) in the presence of AlCl_3 afforded 1,2,11,12-tetrachloro-2,11-H(CH₃)-dodecane-4,9-dione (3a,b) and *trans*-1,4-di-[3-H(CH₃)-3,4-dichlorobutanoyl-1]cyclohexane (3c,d) (scheme 3).

Scheme 3.


$\text{R} = -(\text{CH}_2)_4-$ (1a; 3a,b; 4a,b); *trans*-1,4-cyclo-C₆H₁₀ (1b; 3c,d; 4c,d); $\text{R}^1 = \text{H}$ (2a; 3a,c; 4a,c); CH₃ (2b; 3b,d; 4b,d).

During vacuum distillation of the tetrachloroketones (3a–d), heterocyclization occurs, leading to the formation of 1,4-difuryl derivatives of butane (4a,b) and cyclohexane (4c,d) (scheme 3).

The structures of the difurans (4a–d) were confirmed based on IR and ¹H NMR spectral data as well as chemical transformations.

In the furan compounds 4a–d, the furan rings participate in a Diels–Alder reaction with maleic anhydride, forming the corresponding Diels–Alder adducts (scheme 4) [20].

Scheme 4.

Here, R and R¹- are the ones shown in the 3rd scheme.

The IR spectra of the difuran compounds (4a–d) exhibit absorption bands characteristic of the furan ring (cm⁻¹): 2950–3150 (ν_{CH}); 1598–1610 ($\nu_{\text{C}=\text{C}}$); 1510–1534 ($\nu_{\text{C}=\text{C}}$); 880–895 (δ_{CH}) (experimental section).

In the ¹H NMR spectra of compounds 4a–d, the protons of the 1,4-substituted butane (cyclohexane) fragments appear at δ 1.4–2.9 (1.1–2.4) ppm, while the protons of the furan ring are observed as characteristic multiplets at δ 5.6–7.2 ppm (experimental section).

Thus, a two-step, efficient method has been developed for the synthesis of butane and cyclohexane difuryl derivatives based on the reaction of the dichlorides of adipic and *trans*-1,4-cyclohexanedicarboxylic acids with 3-chloropropene and 2-methyl-3-chloropropene.

REFERENCES

1. Mashkovsky, M.D. *Medicinal Products*. Moscow: Novaya Volna, 2021, 1216 pp.
2. Joule, J., Mills, K. *Heterocyclic Chemistry*. Moscow: Mir, 2009, 728 pp.
3. Yurovskaya, M.A. *Chemistry of Aromatic Heterocyclic Compounds*. Moscow: Binom, 2015, 208 pp.
4. Grapov, A.F. New Insecticides and Acaricides // *Uspekhi Khimii* [Russian Chemical Reviews], 1999, Vol. 68(8), pp. 773–784.
5. Kwiesien, H. Five-Membered Ring Systems: Furans and Benzofurans // *Progress in Heterocyclics Chemistry*, 2020, № 31, pp. 281–323.
6. Guseinova, V.A., Zaidova, G.A., Mammadov, E.İ. Reaction of Chloranhydrides of Cycloalkanecarboxilic Acids with some Allylis Chlorides // *Chemical Problems*, 2021, № 3 (19), pp. 179–185.
7. Petkovich, S.K., Potkin, V.I., Kaberdin, R.V. Synthesis of 3-Aryl-5-Dichloroethyl-N-Carbonylpyrazoles based on 1-Aryl-3,4,4-Trichloro-3-Buten-1-ones // *Zhurnal Organicheskoi Khimii* [Journal of Organic Chemistry], 2006, Vol. 42, Issue 10, pp. 1496–1499.
8. Bozhenkov, G.V., Savosik, V.A., Klyba, L.V. [et al.]. 1-Alkylpyrazoles and 1-Alkyl-5-Chloropyrazoles from Halogenvinylketones and 1,1-Dialkylhydrazones // *Zhurnal Organicheskoi Khimii* [Journal of Organic Chemistry], 2008, Vol. 44, Issue 8, pp. 1207–1212.
9. Ahmadova, N.Y. Synthesis of 1-Allyl-2-Cycloalkyl-4-H(CH₃)pyrroles from Saturated Dichloroketones and Unsaturated Chloroketones // *News of the Pedagogical University. Series of Mathematics and Natural Sciences*. Baku: ADPU, 2024, Vol. 72, No. 3, pp. 95–101.

10. Ibragimov, I.I., Mamedov, E.I., Ismailov, A.T. [et al.]. Chemistry of Allylic-type Cystems. II. Acylation of 3-Bromo- and 2-Methyl-1-Propenes // *Zhurnal Organicheskoi Khimii* [Journal of Organic Chemistry], 1990, Vol. 26, Issue 8, pp. 1648–1654.
11. Mammadov, E., Mammadov, A., Huseynova, V. [et al.]. Temperature Dependence of the Reaction of Elektrophilic Addition of Acyl Chlorides to Allyl Chloride / 6th International Conference: Thermophysical and Mechanical Properties of Aduanced Materials (Thermam 2019). Izmir, Turkey, 22-24 september, 2019, pp. 54-55.
12. Bozhenkov, G.V., Levkovskaya, G.G., Larina, L.I. [et al.]. Synthesis, Structure, and Properties of 1,2-Dichlorovinylalkylketones // *Zhurnal Organicheskoi Khimii* [Journal of Organic Chemistry], 2004, Vol. 40, Issue 11, pp. 1632–1640.
13. Ahmadova, N.Y., Mammadov, E.I. A New Approach to the Synthesis of Cycloalkyl-Substituted Pyrroles / In *Proceedings of the International Scientific Conference “Monomers and Contemporary Problems of Petrochemistry” Dedicated to the 110th Anniversary of Academician S. Mehdiyev*. Baku, December 19–20, 2024, pp. 86–87.
14. Mammadov, E.I., Huseynova, V.A., Mekhtiyeva, S.T. [et al.]. New Synthesis of 3- and 1,3- Pyrazole Derivatives based on 1-Cycloalpyl-2,3-dichloro-1-propanones // *Azerb. Chem. Journal*, 2022, № 4, pp. 89-94.
15. Mammadov, E., Huseynova, V., Yusubov, F. [et al.]. New Way for the Synthesis of 1,3-Pyrazole Derivatives by the Reaction of 1-Alkyl-2,3-dichloropropanones with Phenylhydrazine // Norwegian Journal of development of the International Science. Oslo, Nor-Norway, 2022, № 90, pp. 3-7.
16. Ahmadova, N.Y., Mammadov, E.I. A New Synthesis of 1,2- and 1,2,4-Substituted Pyrroles // *News of the Pedagogical University. Series of Mathematics and Natural Sciences*. Baku: ADPU, 2023, Vol. 71, No. 3, pp. 84–93.
17. Zaidova, Q.Ə., Mammadov, E.I., Ismayilov, S.Q. Study of the Acylation Products of 3-Chloro-, 2-Methyl-3-Chloro- and 2,3-Dichloropropenes // *Azerbaijan Technical University, Scientific Works*, 2019, No. 2, pp. 101–104.
18. Ismailov, A.G., Mamedov, E.I. Synthesis of Furan Derivatives via Condensation of Cycloalkanecarbonyl Chlorides with Allyl Chloride // *Zhurnal Organicheskoi Khimii* [Journal of Organic Chemistry], 1974, Vol. 10, Issue 5, pp. 1129–1130.
19. USSR Author's Certificate 450797. Method for the Preparation of 2-(Chlorocycloalkyl)furans / Ismailov, A.G., Mamedov, E.I. // *Bulletin of Inventions*, 1974, No. 43, p. 57.
20. Joule, J., Smith, G. *Fundamentals of Heterocyclic Chemistry*. Moscow: Mir, 1975, pp. 206–283.